GEFRAN

IK₂ P

CONTACTLESS RECTILINEAR MAGNETOSTRICTIVE DISPLACEMENT TRANSDUCER (PROFIBUS OUTPUT)

Main features

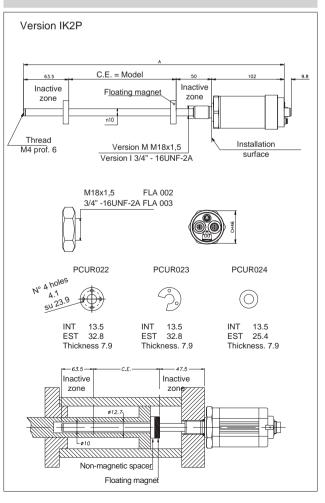
- Ability to control up to four cursors simultaneously
- Two M12 connectors for simplified connection to Profibus, one M8 connector for separate power connection (transducer can be powered without having to connect it to the bus)
- Local intelligence
- Profibus DPV0 interface on RS485 in conformity to IEC 61158
- Strokes from 50 to 4000 mm
- Displacement position settable via software up to 5 µm
- Speed resolution up to 0.01 mm/sec
- Linearity error ≤ 0.01%
- Repeatability error ≤ 0.001%
- Conforms to EC directives (EN 50081-1 50082-1)
- Resistance to vibration (DIN IEC68T2/6 12 g)
- IP67 protection

Contactless absolute linear displacement transducer with magnetostrictive technology.

The Profibus fieldbus communication interface permits integration in complex systems with large communication distances, guaranteeing safe and rapid data transmission.

The contactless cursor eliminates problems of wear, for almost unlimited transducer life.

The countless advantages include reduced size for easier installation, high protection level for use in harsh environments, high performance in terms of linearity, repeatability, and resistance to vibration and impact, to assure maximum reliability.

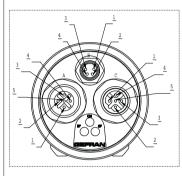

CARATTERISTICHE TECNICHE

Model	from 50 to 4000 mm					
Measurement read	Displacement					
Displacement sampling time (typical)	1 ms					
Shock test DIN IEC68T2-27	100g - 11ms - single blow					
Vibrations DIN IEC68T2-6	12g / 102000Hz					
Displacement speed	≤10 m/s					
Max. acceleration	≤ 100 m/s² Displacement					
Resolution	up to 5 μm					
Cursor type	Separate floating magnet					
Working temperature	-30+75°C					
Storage temperature	-40+100°C					
Temperature coefficient	20ppm FS / °C					
Ambient protection	IP67					

ELECTRICAL CHARACTERISTICS

Output signal	Profibus DPV0						
	on RS485						
Rated power supply	24 Vdc ±20%						
Max. power ripple	1Vpp						
Max. input	100mA						
Min. load on output	RS485 standard						
Electrical isolation	500 V						
	(D.C. supply/ground)						
Protection against reversed	Yes						
polarity							
Protection against overvoltage	Yes						
Self-resetting internal fuse	Yes						
-							

MECHANICAL DIMENSIONS



ELECTRICAL / MECHANICAL DATA

Model		50	75	100	130	150	175	200	225	5 250	0 30	00 35	0 36	60 4	00 4	450	500	550	600	0 65	0 7	00 750	800	85	0 900	950	1000	1100	1200	1250	1300	1400	1500
																							17	50	2000	2250	2500	2750	3000	3250	3500	3750	4000
Electrical stroke (C.E.)	mm																	N	lod	el													
Independent linearity	± %F.S.															ty	pica	ıl 0,	02 ((Max	ι. Ο,	04)											
Max. dimensions (A)	mm																M	ode	l + :	215,	50												
Repeatability	mm																	<	0,0)1													
Hysteresis	mm																	<	: 0,0	01													
Minimum sampling time	ms				1	for s	trol	es	fror	n 0	to 1	1200)mm	n; 2	2 for	r str	oke	es fr	om	12	00	to 24	00m	nm;	4 fo	rstro	okes	from	> 24	00mr	n		

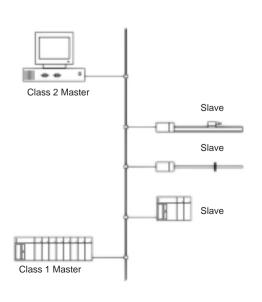
ELECTRICAL CONNECTIONS AND CONFIGURATION OF LEDs

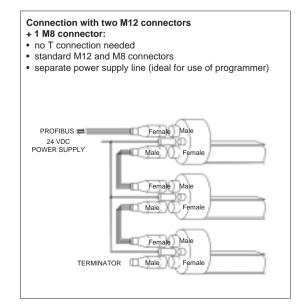
IK2P W OUTPUT

CONNECTOR A (M12 FEMALE)									
1	5VD_ISO								
2	LINE_A/N								
3	GND_ISO								
4	LINE_B/P								
5	GROUND								

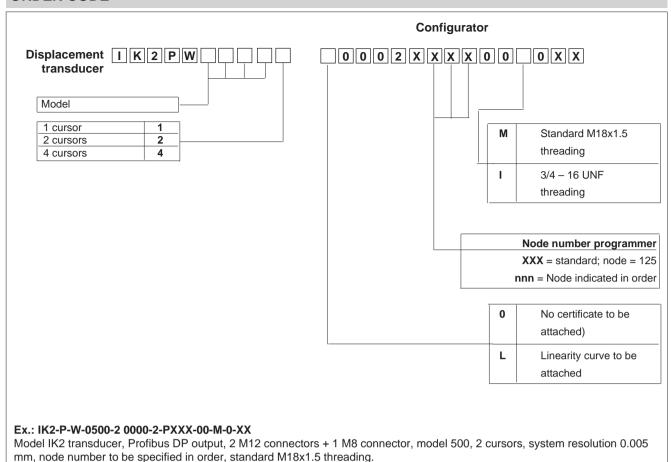
CONNECTOR B (M8 MALE)							
1	24V						
2	N.C.						
3	0V						
4	4 N.C.						

CONNECTOR C (M12 MALE)								
1	5VD_ISO							
2	LINE_A/N							
3	GND_ISO							
4	LINE_B/P							
5	GROUND							


GREEN LED (ON)	RED LED (System Fault)	RED LED (Bus Fault)	CODE							
Off	Off	Off	Device not powered							
On	On	On	Internal device error (incorrect initialization)							
			Master not connected to network							
On	Off	On	Correct initialization							
			Network error, master not connected to network							
On	On	Off	Incorrect number of magnets							
			Magnet out of measurement range							
			Internal device error							
On	On/Off	Flashing	Master connected to network							
		(f=1Hz)	Incorrect parameterization or configuration							
On	Off	Off	Device in data exchange							


PROFIBUS AND CONNECTION STRUCTURE

A Profibus network lets you connect peripheral devices defined as Slaves (transducers or actuators) to main control units defined as Class 1 Masters (typically PLCs).


The network software is installed by means of a Class 2 Master containing the database with the GSD files of all connected devices. The network is drawn and parameterized with a graphics tool, then the configuration is loaded in the Class 1 Masters in the network. The Class 1 Master(s) launch(es) the communication process with the peripheral devices according to the configuration received from the Class 2 Master.

This process includes an exchange of initial data regarding identification of the Slaves and their parameterization and configuration. When this phase is done, control of the application begins with an exchange of process data on the network. The GSD file contains all of the data on device identification, supported functions, and length and format of data packets.

ORDER CODE

OPTIONAL CABLES

M8 axial 4-pin female connector, prewired with 3-meter power cable	PCAV700
M8 axial 4-pin female connector, prewired with 5-meter power cable	PCAV701
M12 axial 5-pin female connector, prewired with 3-meter power cable	PCAV702
M12 axial 5-pin female connector, prewired with 5-meter power cable	PCAV704
M12 axial 5-pin male connector, prewired with 3-meter power cable	PCAV703
M12 axial 5-pin male connector, prewired with 5-meter power cable	PCAV705

OPTIONAL ACCESSORIES

Profibus terminator (M12 axial male connector)	CON049
M12 axial 5 pin male connector	CON380
M12 axial 5 pin female connector	CON390
Node number programmer	xxxxxx
GSD file downloadable from website www.gefran.com	

